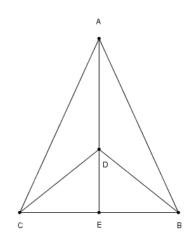
Item 11

Zu der nebenstehenden Zeichnung gehört die Aufgabe:


Gegeben: |AB| = |AC|, $|\angle(DCB)| = |\angle(DBC)|$

Beweise, dass die Gerade durch A und E Symmetrieachse der Strecke \overline{BC} ist.

Du sollst diesen Beweis nicht ausführen, sondern stattdessen aus der obigen Aufgabe so viele Variationen wie möglich herstellen. Dazu kannst du Teile ersetzen, anpassen, verändern, erweitern, entfernen, umstellen oder umkehren. Du musst die neuen Aufgaben nicht lösen!

Zum Beispiel: Gegeben: die Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} . Beweise: $|\measuredangle(DCB)| = |\measuredangle(DBC)|$.

Wenn du mehr Platz brauchst, frage nach zusätzlichen Aufgabenblättern für diese Aufgabe.

Fluency: Each relevant response is given one point.

Flexibility: The number of different categories of relevant responses. Each flexibility category is given one point.

- C1 Responses that ask for proving axis of symmetry.
- C2 Responses that ask for proving side lengths.
- C3 Responses that ask for proving angle measurements.
- C4 Responses that ask for proving congruency.
- C5 Responses that ask for proving similarity
- C6 Responses that ask for proving other domains.

Elaboration: It is graded by the number of follow-up questions or problems that are posed by redefining – substituting, combining, adapting, altering, expanding, eliminating, rearranging, or reversing – one or more aspects of the given geometric problem or situation. Each correct response is given one point.

Originality/Novelty: It is the statistical infrequency of responses in relation to peer group. Each response is given zero, one, two, three or four points according to the following table:

Grading originality points for the geometric creativity test

The number of students who registered the response	1	2	3	4	5
	Student	Student	Student	Student	Student
Originality score	4	3	2	1	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
Gegeben ist das gleichschenklige ΔABC . D liegt auf der Mittelsenkrechte von Strecke \overline{CB} . Zeige, dass ΔCDB ein gleichschenkliges	Tiu.			
Dreieck ist.	1	C2	1	4
Score	1	1	1	4

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
Gegeben: Gerade durch A und E ist				
Symmetrieachse von \overline{BC} , $ \angle(DCB) = \angle(DBC) $				
und $ \overline{AB} = \overline{AC} $.				
Zeige, dass \triangle BDE \equiv \triangle CDE				
$(\triangle BDE \equiv \triangle CDE)$	1	C4	1	1
Gegeben: Gerade <u>durch</u> A und E ist				
$ Symmetrieachse von BC, \angle(DCB) = \angle(DBC) $				
und AB = AC .				
Zeige, dass $\triangle ABD \equiv \triangle ADC$				
$(\triangle ABD \equiv \triangle \underline{ADC})$	1	C4	1	1
Zeige, dass $ AB = AC $, wenn es heißt:				
Gerade durch A und E ist Symmetrieachse				
$ \operatorname{von} BC $, $ \measuredangle(\operatorname{DCB}) = \measuredangle(\operatorname{DBC}) $, $ \measuredangle(\operatorname{ABD}) = \measuredangle(\operatorname{ABD}) $				
$ \measuredangle(ACD) , \measuredangle(CDE) = \measuredangle(BDE) $	1	Ca	1	
(AB = AC)	3	C3 2	3	0 2
Score	3		3	

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
Gegeben: $ \overline{CD} = \overline{BD} , \overline{AB} = \overline{AC} .$				
Beweise, dass die <u>G</u> erade durch A und E				
Symmetrieachse von BC ist.	1	C1	1	4
Score	1	1	1	4

Student's Responses	Flu.	Flex.	Elab.	Ori.
A D B				
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} .				
Beweise: $ \overline{DC} = \overline{DB} $				
(CD = DB)	1	C2	1	3
Score	1	1	1	3

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D B				
Gegeben: Gerade durch A und E ist				
Symmetrieachse der Strecke \overline{BC} und $ \measuredangle(DCB) =$				
\(\lambda(DBC)				
Zeige, dass $ \overline{AB} = \overline{AC} $				
(AB = AC)	1	C1	1	0
Gegeben: Gerade durch A und E ist				
Symmetrieachse der Strecke BC , und $ AB =$				
AC .				
Zeige, dass $\triangle ACD \equiv \triangle BAD$	1	C 4	4	4
$(\triangle ABD \equiv \triangle ADC)$	1	C4	1	1
Score	2	2	2	I

Student's Responses	Flu.	Flex.	Elab.	Ori.
A Y Y				
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} . Beweise: $\triangle ADC \equiv \triangle ADB$				
$(\triangle ABD \equiv \triangle ADC)$	1	C4	1	1
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} . Beweise: \triangle CED $\equiv \triangle$ BED				
$\triangle BDE \equiv \triangle CDE$ Gegeben: Gerade durch A und E ist	1	C4	1	1
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} , $\overline{DY}\bot\overline{AB}$ und $\overline{DX}\bot\overline{AC}$. Beweise, dass \overline{DY} und \overline{DX} die selbe Länge haben.	1	C2	1	4
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} , $\overline{DY}\bot\overline{AB}$ und $\overline{DX}\bot\overline{AC}$. Beweise, dass \triangle XDA und \triangle YDB ähnlich				
Dreiecke sind.	1	C5	1	4
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} , $\overline{DY}\bot\overline{AB}$ und $\overline{DX}\bot\overline{AC}$. Beweise, dass \triangle XDA und \triangle YDB kongruent Dreiecke sind.	1	C4	1	4
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} , $\overline{DY}\bot\overline{AB}$ und $\overline{DX}\bot\overline{AC}$.				
Beweise, dass $ \measuredangle(DCX) = \measuredangle(DAY) $	1	C3	1	4
Score	6	4	6	18

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
С Е В		_	_	
Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D				
C E B				
No response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
Gerade durch A und E ist Symmetrieachse der				
Strecke \overline{BC} .				
Beweise: $ \angle(ECA) = \angle(EBA) $				
$(\measuredangle(ECA) = \measuredangle(EBA))$	1	C3	1	3
Gerade durch A und E ist Symmetrieachse der				
Strecke BC.				
Beweise: $\triangle AEC \equiv \triangle AEB$				
$(\triangle AEC \equiv \triangle AEB)$	1	C4	1	2
Gerade durch A und E ist Symmetrieachse der				
Strecke BC.				
Beweise: $ \measuredangle(DBA) = \measuredangle(DCA) $				
$(\measuredangle(DBA) = \measuredangle(DCA))$	1	C3	1	3
Score	3	3	3	8

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
AE ist Mittelsenkrechte von \overline{BC} und es gilt A				
$\in CA \text{ und } A \in AB$				
Zeige, dass $ \measuredangle(DCB) = \measuredangle(DBC) $				
$(\measuredangle(DCB) = \measuredangle(DBC))$	1	C3	1	3
Score	1	1	1	3

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D				
C E B	0	0	0	0
Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B Not related response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D				
C E B	0	0	0	0
No response.		0	0	
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D				
C E B	0	0	0	0
Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
C E B Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
Gegeben: $ \overline{AB} = \overline{AC} $ und E halbiert \overline{BC} .				
Zeige, dass $\overline{AE} \perp \overline{BC}$	1	C6	1	4
Gegeben: Gerade durch A und E ist				
Symmetrieachse der Strecke \overline{BC} , und $ \angle(DCB) =$				
\(\(\(\(\text{DBC} \) \) .				
Zeige, dass $\triangle CED \equiv \triangle EBD$				
$(\Delta BDE \equiv \Delta CDE)$	1	C4	1	1
Score	2	2	2	5

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
Gegeben: $ \measuredangle(DCB) = \measuredangle(DBC) $ und die Gerade durch A und E ist Symmetrieachse der				
Strecke \overline{BC} .				
Beweise, dass $ \overline{AB} = \overline{AC} $				
(AB = AC)	1	C2	1	0
Gegeben: $ \measuredangle(DCB) = \measuredangle(DBC) $ und die Gerade				
durch A und E ist Symmetrieachse der				
Strecke BC.				
Beweise, dass $\triangle ACE \equiv \triangle AEB$				
$(\triangle AEC \equiv \triangle AEB)$	1	C4	1	2
Score	2	2	2	2

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D				
C E B				
Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A D B B				
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} und $ \measuredangle(DCB) = \measuredangle(DBC) $.				
Beweise, dass $ \overline{AB} = \overline{AC} $ (AB = AC)	1	C2	1	0
Score	1	1	1	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D				
C E B				
Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
Gegeben: Gerade durch A und E ist				
Symmetrieachse der Strecke \overline{BC} .				
Beweise: $ \overline{AB} = \overline{AC} $				
(AB = AC)	1	C2	1	0
Gegeben: Gerade durch A und E ist				
Symmetrieachse der Strecke \overline{BC} und $ \measuredangle(DCB) =$				
≼(DBC) .				
Beweise: \triangle CDE ist dem \triangle BDE ähnlich.	1	C5	1	4
Gegeben: $ \overline{AB} = \overline{AC} $ und $ \measuredangle(ACB) = \measuredangle(ABC) $.				
Beweise, dass E die Strecke \overline{BC} halbiert.	1	C2	1	4
Score	3	2	3	8

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
Gegeben: $ \measuredangle(DCB) = \measuredangle(\underline{DBC}) $				
\overline{AE} Symmetrieachse von \overline{BC}				
Beweise, dass $ \overline{AB} = \overline{AC} $				
(AB = AC)	1	C2	1	0
Score	1	1	1	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D				
C E B				
Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
Die Gerade durch A und E ist Symmetrieachse				
der Strecke \overline{BC} .				
Beweise: $ \overline{AB} = \overline{AC} $				
(AB = AC)	1	C2	1	0
D liegt auf der Symmetrieachse der Strecke \overline{BC} . Beweise: $ \measuredangle(BCD) = \measuredangle(DBC) $				
$(\measuredangle(DCB) = \measuredangle(DBC))$	1	C3	1	3
\overline{AE} ist Symmetrieachse $\triangle ABC$ und $ \angle (BCD) =$				
\(\(\(\text{DBC} \)				
Beweise: $ \measuredangle(CDE) = \measuredangle(EDB) $	1	C3	1	4
Score	3	2	3	7

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D				
C E B				
Wrong response.	0	0	0	0
Score	0	0	0	0

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
C E B				
AE Symmetrieachse				
Beweise: $ \angle(ACE) = \angle(ABE) $				
$(\measuredangle(ECA) = \measuredangle(EBA))$	1	C3	1	3
AE Symmetrieachse				
Beweise: $ \overline{AB} = \overline{AC} $				
(AB = AC)	1	C2	1	0
Score	2	2	2	3

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
D B				
Symmetrieachse				
Beweise: $\triangle ACD \equiv \triangle ABD$				
$(\triangle ABD \equiv \triangle ADC)$	1	C4	1	1
Symmetrieachse				
Beweise: $\triangle ECD \equiv \triangle DEB$				
$(\triangle BDE \equiv \triangle CDE)$	1	C4	1	1
Score	2	1	2	2

Student's Responses	Flu.	Flex.	Elab.	Ori.
A				
Gegeben: Gerade durch A und E ist				
Symmetrieachse der Strecke \overline{BC} .				
Beweise: $ \overline{CD} = \overline{DB} $				
(CD = DB)	1	C2	1	3
Gegeben: Gerade durch_A und E ist				
Symmetrieachse der Strecke BC.				
Beweise: $\triangle ACE \equiv \triangle ABE$				
$(\triangle AEC \equiv \triangle AEB)$	1	C4	1	2
Gegeben: Gerade durch_A und E ist				
Symmetrieachse der Strecke \overline{BC} .				
Beweise: $ \measuredangle(ACD) = \measuredangle(DBA) $				
$(\measuredangle(DBA) = \measuredangle(DCA))$	1	C3	1	3
Score	3	3	3	8

Originality Scores for Students' Responses on Item 11

Student's Responses	Frequency	Originality Scores
Die Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} .		
Beweise: $ \overline{AB} = \overline{AC} $	0	0
(AB = AC) Gegeben: Gerade durch A und E ist Symmetrieachse	8	0
der Strecke \overline{BC} .		
Beweise: $\triangle CED \equiv \triangle BED$		
$(\triangle BDE \equiv \triangle CDE)$	4	1
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} .		
Beweise: $\triangle ADC \equiv \triangle ADB$	_	4
$(\triangle ABD \equiv \triangle ADC)$	4	1
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} . Beweise: $\triangle AEC \equiv \triangle AEB$		
$(\triangle AEC \equiv \triangle AEB)$	3	2
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} . Beweise: $ \overline{CD} = \overline{DB} $		
(CD = DB)	2	3
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} . Beweise: $ \measuredangle(ECA) = \measuredangle(EBA) $		
$(\measuredangle(ECA) = \measuredangle(EBA))$	2	3
Gegeben: Gerade durch A und E ist Symmetrieachse der Strecke \overline{BC} .		
Beweise: $ \measuredangle(DBA) = \measuredangle(DCA) $	2	3

$(\measuredangle(DBA) = \measuredangle(DCA))$		
Gegeben: D liegt auf der Symmetrieachse der		
Strecke \overline{BC} .		
Beweise: $ \measuredangle(BCD) = \measuredangle(DBC) $		
$(\measuredangle(DCB) = \measuredangle(DBC))$	2	3
Gegeben ist das gleichschenklige AABC. D liegt auf		
der Mittelsenkrechte von Strecke $\overline{\it CB}$.		
Zeige, dass ΔCDB ein gleichschenkliges Dreieck ist.	1	4
Gegeben: $ \overline{CD} = \overline{BD} , \overline{AB} = \overline{AC} .$		
Beweise, dass die Gerade durch A und E		
Symmetrieachse von \overline{BC} ist.	1	4
Gegeben: $ \overline{AB} = \overline{AC} $ und E halbiert \overline{BC} .		
Zeige, dass $\overline{AE} \perp \overline{BC}$	1	4
Gegeben: Gerade durch A und E ist Symmetrieachse		
der Strecke \overline{BC} , $\overline{DY}\bot\overline{AB}$ und $\overline{DX}\bot\overline{AC}$.		
Beweise, dass \overline{DY} und \overline{DX} die selbe Länge haben.	1	4
Gegeben: Gerade durch A und E ist Symmetrieachse		
der Strecke \overline{BC} , $\overline{DY}\bot\overline{AB}$ und $\overline{DX}\bot\overline{AC}$.		
Beweise, dass \triangle XDA und \triangle YDB ähnlich Dreiecke		
sind.	1	4
Gegeben: Gerade durch A und E ist Symmetrieachse		
der Strecke BC , $\overline{DY}\bot\overline{AB}$ und $\overline{DX}\bot\overline{AC}$.		
Beweise, dass \triangle XDA und \triangle YDB kongruent		
Dreiecke sind.	1	4
Gegeben: Gerade durch A und E ist Symmetrieachse		
der Strecke BC , $\overline{DY}\bot \overline{AB}$ und $\overline{DX}\bot \overline{AC}$.		
Beweise, dass $ \measuredangle(DCX) = \measuredangle(DAY) $	1	4
Gegeben: Gerade durch A und E ist Symmetrieachse		
der Strecke BC.		
Beweise: \triangle CDE ist dem \triangle BDE ähnlich.	1	4
Gegeben: $ \overline{AB} = \overline{AC} $ und $ \angle(ACB) = \angle(ABC) $.		
Beweise, dass E die Strecke \overline{BC} halbiert.	1	4
\overline{AE} ist Symmetrieachse $\triangle ABC$ und $ \angle (BCD) =$		
\(\(\(\(\text{DBC} \) \)		
Beweise: $ \measuredangle(CDE) = \measuredangle(EDB) $	1	4